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ABSTRACT: The paper’s focus is on studying the sensitivity analysis (SA) of the geometric parameters 
(including length, thickness and width) of a robotic manipulator with two elastic links. Two important 
parameters that influence the design of these kinds of robotic systems are the maximum deflection (MD) 
of the end-effector and the vibration energy (VE) of that point. So, the Sobol’s SA method is applied to 
determine how these two parameters are influenced by the geometric parameters of the system. The 
dynamic model of the system is developed based on the Lagrangian formulation. Elastic properties of 
the links are modeled by applying the Assumed Modes Method (AMM) and the assumption of the Euler 
Bernoulli Beam Theory (EBBT). Finally, based on the achieved results, a parameter is introduced as a 
criterion to design the elastic robotic manipulators with the least adverse effects of vibration. 
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INTRODUCTION 
 
 Research into the elastic manipulator fields has become more important for many years on account of the new 
robotic applications in various fields such as: industrial tasks in which the trend is to use lightweight materials. 
Nowadays, most of the existing robots are built by using the heavy materials and bulky design to minimize the 
vibration of the end-effector to achieve the acceptable accuracy. The rigid manipulators are not efficient in terms of 
power consumption or speed. As a consequence, building the robotic manipulators in a lightweight design is very 
desirable to reduce the weight of the arms to increase their speed of operation. So, understanding and analyzing of 
flexible manipulations has concerned researchers for many years (Nikolakopoulos et al., 2010; Hassan et al., 2007; 
Bascetta et al., 2006; Korayem et al. 2005; Hermle et al., 2000).  
 SA is an essential instrument for designing, building, use and understanding of mathematical models of all 
forms (Taranatola et al., 2003).  Investigators have accepted that the SA of complicated phenomena are very 
important and essential to overall analysis of such phenomena (Turanyi, 1990). The main goal of the SA is to 
identify the most significant factors among the others that contribute in the output variables (Storlie et al., 2009; 
Kucherenco et al., 2008; Xu et al., 2007). Parametric study has been used widely in other sciences to analyze 
models (Ellwein et al., 2008; Richter et al., 2009; Korayem et al., 2009; Korayem et al., 2010), but this type of 
analysis has been used the least for the analysis of the elastic robotic manipulators. 
 Two main approaches of SA are recognized as local SA and global SA (Saltelli et al., 2000). Global SA 
techniques are more preferable than the local ones. So, in most of investigations, global SA techniques are utilized 
instead of the local one. The method of Sobol’ is the most common method for global SA that currently used (Sobol 
et al., 1993). This method was successfully used for a single link elastic robotic manipulator to determine the 
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effects of all geometrical parameters on vibrations and deflections of the end-effector (Korayem et al., 2012).  But 
as mentioned, this study was confined to single flexible link. In this manuscript to design the optimal dimensions for 
a two links elastic robotic manipulator, the parametric study of this system will be investigated by Sobol’s SA 
method. So, the rest of the paper is gorgonized as following: 
 At first, motion equations of a two links flexible manipulator will be derived according to the Lagrangian 
formulation and AMM. Then VE and MD of the end-effector are obtained using EBBT theory. In continue Sobol’s 
SA method is used to evaluate how VE and end-point MD are influenced by geometric parameters. Finally, the 
conclusions from the present work are summarized and the merits of the proposed method are highlighted. 
   
Modeling of a Manipulator with Multiple Flexible Links 
 The generalized Euler-Lagrange formulation and assumed modes method is used to derive the dynamic 
equations of flexible manipulators. All the flexible links are assumed to be Euler-Bernoulli beams, where the shear-

force-shortening effect and rotary inertia are neglected. For a general N-link flexible robot, the vibration  txv ii ,  of 
each link which describes the deflection of the i

th
 link with respect to its undeflected configuration can be 

represented by a series form as 

      


in

j ijiijii nitqxtxv
1

,......,1,, 
 

(1) 

Where 
 txv ii ,

 is the bending deflection of the i
th
 link at a spatial point 

 tLxx iii ,0 
 and iL

 is the length of the i
th
 

link. in
 is the number of modes used to describe the deflection of link i; 

 iij x
and 

 tqij  are the j
th
 mode shape 

function and j
th
 modal displacement for the i

th
 link, respectively. Position and velocity of each point on link I can be 

obtained with respect to inertial coordinate frame using the transformation matrices between the rigid and flexible 
coordinate systems. After that, by considering the generalized coordinates of the manipulator which consists of two 

parts, the generalized coordinates of the rigid body motion of the links 
 Tnr qqqq .....,, 21

 and generalized coordinates 

defining the deflection of the manipulator 
 Tnnnnnf n

qqqqqqqq .....,,.....,,.....,,,,...,, 122111211 2


, the dynamic equation of 
flexible link manipulator is developed by using the Lagrangian assumed modes method as follows: 
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(2) 

By defining the generalized forces as 
   TniUU 0.....,,0,......,,, 21 

 and, the generalized coordinate system as 

   Tnnnnnni n
qqqqqqqqqQQ ......,,,,.....,.......,,,,,......,,, 211121121 1


, where nt nnnnni  .....,.....,1 21 , Eq.(2) can be 

written in compact form as  

    ,, UQGQQHQM  
 (3) 

where M is the mass matrix, H is the vector of Coriolis and centrifugal forces, and G describes the gravity effects. 
By defining the following vectors as 

     
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(4) 

Eq.(3) can be expressed in terms of the following state equation 

   ,,; 21122211 XXNUXDFXXFX  
 (5) 

 where 
1 MD  and     121

1 , XGXXHMN  

.  
 
Deriving the motion equations 
 A two-link manipulator with flexible link at horizontal plane with the associated coordinate system is shown in 
Figure1. Using the generalized modeling scheme, equations of motion of a manipulator with two flexible links are 
derived here. 

Using the symbols defined in Figure1, the expressions for position vector 1r  and 2r  in the XY  plane can be written 
as below: 
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Figure 1. Two links elastic robotic manipulator 

 

where 1211 ,, csc  and 12s  are shorthand expressions for      2111 cos,sin,cos   , and  21sin   , respectively. To 

obtain a simplified model with reasonable accuracy, two modes per link are considered, so  txv ii ,  can be given by 
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(7) 

By considering the simply support mode shape, ij  can be computed as follows: 

    .2,12,1,/sin  jandiLxjx iiiij 
 (8) 

 The kinetic energy of a point  ii xr  on the links can be written as  
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Where i  is the linear mass density for the i
th
 link and 

 ii xr
 is the velocity vector. The velocity vector can be 

computed by taking the time derivative of its position (6): 
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(10) 

On the other hand, the potential energy due to the deformation of the first and second links can be written as  
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(11) 

where iiIE  is the flexural rigidity of the i
th
 link and iv

 is substituted from (7) and (8). Next, to obtain a closed-form 
dynamic model of the manipulator, the energy expressions (9) and (11) are used to formulate the Lagrangian 

 2121 UUKKL 
. Here the generalized coordinate vector consists of link positions 

 21,
 and modal 
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displacements  22211211 ,,, qqqq . The generalized force vector is  TU 0,0,0,0,, 21  , where 1  and 2  are the torques 
applied by motor 1 and motor 2, respectively. Therefore, the following Euler-Lagrange’s equations results, with 

2,1i  and 2,1j :  
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(12) 

The final dynamic equations of motion of the manipulator after algebraic simplifications can be put in a concise 
form as  

,

0

0

0

0

2

1

22

21

12

11

2

1

22

21

12

11

2

1

44

3433

242322

14131211

21421321221122

1141131121111211





















































































































f

f

f

f

r

r

ff

ffff

ffffff

ffffffff

rfrfrfrfr

rfrfrfrfrr

h

h

h

h

h

h

q

q

q

q

J

JJSym

JJJ

JJJJ

JJJJJ

JJJJJJ













 

(13) 

 Because of the very long terms of the Coriolis and centrifugal forces, they are neglected to bring in the paper 

text. Since the motion is in horizontal plane, the gravity effects 
 

fr GG ,
 will be zero. By using Eqs. (3)-(5) and 

defining the state vector as 

 
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(14) 

The state-space form of Eq. (13) is written as 

  ,6......,,1;, 22212  iiFxxx iii


 (15) 

where  iF2  can be obtained from eq. (5). Now, by having the governing equations of this robotic system the 
parametric study of this system will be studied.  
 
Sobol’s Sensitivity Analysis Method 
 Sobol’s sensitivity analysis method is used successfully to non-linear mathematical models as a kind of the 
well-known statistical methods. (Gloda et al., 2008) showed that, Sobol’s method can be applied for model based 
analysis of robotic systems, efficiently. The input factors region should be determined as follows to explain the 
Sobol’s method. 

,...,k),;ixX(Ω i

k 2110 
 

(16) 

where ix
 is the vector of input factors. These vectors are perpendicular with respect to each other. Based on the 

Sobol’s method, the function )(xf  will be obtained by adding the following functions; 

),...,x,x(xf...),x(xf)(xff),...,x,xf(x k,...,k,kji jiij

k

i iik 212111021     
(17) 

In above equation the first term can be determined as, 
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kΩ

f(x)dxf0

 
(18) 

 Sobol demonstrated that, the decomposition of Equation (17) is unique. So, all the terms of this equation can 
be evaluated via multidimensional integrals, 
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(20) 

where iji dxdx ~~ ,
 show the integration over all the variables excluding ix

 and jx
 respectively. Consequently, for 

higher-order terms, continuous formula will be attained. In sensitivity indices, the total variance of f(x) “ D”, can be 
represented as: 

  2
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2 )(f(x)dxfD
 

(21) 
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Squaring and integrating of Equation (17) over all variables, may lead to the simplification of expression D  as: 

 
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
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i kji

,...,k,iji DDDD
1 1
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(22) 

So the sensitivity magnitudes ,...,k,S 21 , are given by:  

D

D
S ....,k,

,...,k,

21

21 
 

ki...i s  11
 (23) 

 The summation of all the sensitivity indices involving the factor in Equation (23) may lead to the total SA index. 

By applying the Sobol’s SA the optimal value of the dimensions of the flexible links in order to minimize the 

vibration energy (VE) and end-effector’s maximum deflection (MD) will be obtained. 

 
Sensitivity Analysis of the VE 

 In this section, the assumption of EBBT is used to obtain the VE of the end-effector for both flexible links of the 

manipulator. At first, the variation intervals of each parameter should be extracted. Table 1, presents those 

intervals. Then, Sobol’s sampling method is applied to generate 1040 uniform random numbers on the presented 

intervals in Table1. After generating random numbers, the VE of the end-effector is achieved for each extracted 

number. The results of the SA of the both elastic links of the manipulator are shown in Table 2. Also, the Pie chart 

diagram associated with the results of the SA of the VE is illustrated in Figures 2. 

 
Table 1. Properties of the links 

Parameter Specifications Units 
Material Aluminum - 

Density(ρ) 2700 3/ mkg
 

Young module (E) 70 Gpa
 

Length (20 , 140) Cm  
Thickness (0.1 , 0.4) Cm  
Width (4 , 7) Cm  

 
Table 2. The SA results of the VE 

No. Sensitivity Indices Values No. Sensitivity Indices Values 

1 
1LS

 
074272.0  

12 
11WTS

 
080972.0  

2 
1TS

 
027617.0  

13 
21LTS

 
631632.0  

3 
1WS

 
00454.0  

14 
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441352.1  

4 
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15 
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150663.0  

5 
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209767.0  

16 
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03725.0  

17 
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863623.1  

7 
11TLS
 

144672.0  
18 
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246469.0  

8 
11WLS

 
434289.0  

19 
22TLS

 
206192.2  

9 
21LLS

 
307296.0  

20 
22WLS

 
464439.0  

10 
21TLS

 
101543.1  

21 
22WTS

 
223036.2  

11 
21WLS

 
321365.0  
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Figure 2. Pie chart diagram of the SA of the VE 

 
 According to the Table 2 and Figure 2, it is obvious that among the first sensitive indices, the most percentage 

of the sensitivity belongs to the thickness of the second link, which is shown by 2TS . 
 To study the relation of VE and the dimensions of the flexible links, the results are illustrated in Figures 3-8.   
As it is expected, the results presented in Figures 3-8, show that, to decrease the VE, the elastic link with short 
length and high width and thickness for each link should be used, except the length of second link. Figure 6 present 
the changing trend of VE with respect to the second link’s length. As it is shown in figure 6, increasing the length of 
this link leads to the reduction of the VE. It happens because of the effect of the second link’s thickness on VE. 
According to the Table 2 and Figure 2, for the second link the effect of thickness is five times more than the effect 
of the length. Due to the great effect of the second link’s thickness, it is not allowed to the VE to increase with 
respect to the length. To achieve the best decision of choosing the optimum dimensions due to VE minimization, 

the factor of 212121 / WWTTLL  is defined. Figure 9 shows the relation between VE and 212121 / WWTTLL , by using the EBBT 

assumption. According to the Figure 9, the best value of 212121 / WWTTLL  is about 

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Figure 3. Effect of the first link’s length on VE Figure 4. Effect of the first link’s thickness on VE 

 
  

Figure 5. Effect of the first link’s width on VE Figure 6. Effect of the second link’s length on VE 
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Figure 7. Effect of the second link’s thickness on VE Figure 8. Effect of the second link’s width on VE 

 

 
Figure 9. Effect of the 212121 / WWTTLL  on VE 

 
Sensitivity analysis of MD of the end-effector 
 In this section, the MD of the end-effector of the elastic links related to those 1040 extracted random numbers 
is computed. The SA is done based on Sobol’s method. The corresponding results of SA are presented in Table 3. 
Figure 10 shows the pie chart diagram of the SA. 
 

Table 3. The SA results of the MD 
No. Sensitivity Indices Values (EBBT) No. Sensitivity Indices Values (EBBT) 

1 
1LS
 

0.04552 12 
11WTS
 

0.058294 

2 
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0.0557 13 
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0.0720729 

3 
1WS
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0.121482 15 
21WTS
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Figure 10. Pie chart diagram of SA of the MD 
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 According to the Figure 10, and like the previous Section it is understood that the most effective parameter 

among the first sensitivity indices, is 2TS
, which shows the sensitivity of the second link’s thickness.  

 To find out how each parameter affects on the MD of the end-effector a simulation is performed. Figures 11- 16 
show the results. Each figure shows the relation of MD of the end-effector with respect to the related parameter 
based on the EBBT assumption. 
 According to the Figures (11-13), the MD of the end-effector is increased by the growth of the length, but by 
increasing the amount of thickness and also width, the MD of the end-effector will be reduced. Figures (14-16) 
show the MD of the end-effector is reduced by increasing all the geometric parameters of the second link. Among 
these, the behavior of the MD with respect to the second link’s length is not normal. It is because of the effect of the 
second link’s thickness on MD. As it is noted in Table 3 and shown in Figure 10, for the second link, the effect of 
thickness is three times bigger than the effect of the length. Because of the high effect of the second link’s 
thickness, the increasing trend of the MD with respect to the length is observed. So, like the previous Section, to 

find the optimal values of dimensions to achieve the minimum MD, the factor of 212121 / WWTTLL  is defined here. Figure 

17 shows the relation between the MD and 212121 / WWTTLL . According to the Figure17, the best values of 212121 / WWTTLL  

is 










2

7 1
101.1

cm . As noted, the dimensions of the flexible links should be selected so that 










2

7

212121

1
101.1/

cm
WWTTLL

. 
 

  
Figure 11. Effects of the first link’s Length on MD Figure 12. Effects of the first link’s thickness on MD 

 

  
Figure 13. Effects of the first link’s width on MD Figure14. Effects of the second link’s length on MD 

 

  
Figure 15. Effects of the second link’s thickness on MD Figure16. Effects of the second link’s width on MD 
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Figure 17. Effects of the 

212121 / WWTTLL  on MD 

  
CONCULSION 

 
 In this research, motion equations of the two flexible links manipulator are extracted by using the Lagrangian 
formulations. AMM is applied to achieve the elastic modeling of the system. VE and MD of the end-effector are 
chosen to study their behavior to achieve appropriate criteria for mechanical design of the system. Additionally, all 
of the simulations are done based on EBBT assumption, and SA is done by using Sobol’s method. After studying 
the effects of each geometric parameter, the relation between those parameters vs. VE and MD are presented. It is 
shown that, the most sensitive parameter corresponds to the second link’s thickness. According to the results, the 

optimum values of VE and MD occur at 










2

6 1
1054.1

cm  and 










2

7 1
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cm  for 212121 / WWTTLL , respectively. 
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